from collections import OrderedDict
import torch
from torch import nn, optim
from ignite.engine import *
from ignite.handlers import *
from ignite.metrics import *
from ignite.metrics.clustering import *
from ignite.metrics.regression import *
from ignite.utils import *
# create default evaluator for doctests
def eval_step(engine, batch):
return batch
default_evaluator = Engine(eval_step)
# create default optimizer for doctests
param_tensor = torch.zeros([1], requires_grad=True)
default_optimizer = torch.optim.SGD([param_tensor], lr=0.1)
# create default trainer for doctests
# as handlers could be attached to the trainer,
# each test must define his own trainer using `.. testsetup:`
def get_default_trainer():
def train_step(engine, batch):
return batch
return Engine(train_step)
# create default model for doctests
default_model = nn.Sequential(OrderedDict([
('base', nn.Linear(4, 2)),
('fc', nn.Linear(2, 1))
]))
manual_seed(666)